Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Mol Oncol ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605607

ABSTRACT

The androgen receptor (AR) is the main driver in the development of castration-resistant prostate cancer, where the emergence of AR splice variants leads to treatment-resistant disease. Through detailed molecular studies of the marine alkaloid manzamine A (MA), we identified transcription factor E2F8 as a previously unknown regulator of AR transcription that prevents AR synthesis in prostate cancer cells. MA significantly inhibited the growth of various prostate cancer cell lines and was highly effective in inhibiting xenograft tumor growth in mice without any pathophysiological perturbations in major organs. MA suppressed the full-length AR (AR-FL), its spliced variant AR-V7, and the AR-regulated prostate-specific antigen (PSA; also known as KLK3) and human kallikrein 2 (hK2; also known as KLK2) genes. RNA sequencing (RNA-seq) analysis and protein modeling studies revealed E2F8 interactions with DNA as a potential novel target of MA, suppressing AR transcription and its synthesis. This novel mechanism of blocking AR biogenesis via E2F8 may provide an opportunity to control therapy-resistant prostate cancer over the currently used AR antagonists designed to target different parts of the AR gene.

2.
J Nat Prod ; 87(2): 217-227, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38242544

ABSTRACT

The urgent need for new classes of orally available, safe, and effective antivirals─covering a breadth of emerging viruses─is evidenced by the loss of life and economic challenges created by the HIV-1 and SARS-CoV-2 pandemics. As frontline interventions, small-molecule antivirals can be deployed prophylactically or postinfection to control the initial spread of outbreaks by reducing transmissibility and symptom severity. Natural products have an impressive track record of success as prototypic antivirals and continue to provide new drugs through synthesis, medicinal chemistry, and optimization decades after discovery. Here, we demonstrate an approach using computational analysis typically used for rational drug design to identify and develop natural product-inspired antivirals. This was done with the goal of identifying natural product prototypes to aid the effort of progressing toward safe, effective, and affordable broad-spectrum inhibitors of Betacoronavirus replication by targeting the highly conserved RNA 2'-O-methyltransferase (2'-O-MTase). Machaeriols RS-1 (7) and RS-2 (8) were identified using a previously outlined informatics approach to first screen for natural product prototypes, followed by in silico-guided synthesis. Both molecules are based on a rare natural product group. The machaeriols (3-6), isolated from the genus Machaerium, endemic to Amazonia, inhibited the SARS-CoV-2 2'-O-MTase more potently than the positive control, Sinefungin (2), and in silico modeling suggests distinct molecular interactions. This report highlights the potential of computationally driven screening to leverage natural product libraries and improve the efficiency of isolation or synthetic analog development.


Subject(s)
Biological Products , COVID-19 , Humans , SARS-CoV-2 , Biological Products/pharmacology , Informatics , Antiviral Agents/pharmacology
3.
Bioorg Chem ; 143: 107103, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211549

ABSTRACT

Three undescribed (1-3) and nine known (4-12) platanosides were isolated and characterized from a bioactive extract of the May leaves of Platanus × acerifolia that initially showed inhibition against Staphylococcus aureus. Targeted compound mining was guided by an LC-MS/MS-based molecular ion networking (MoIN) strategy combined with conventional isolation procedures from a unique geographic location. The novel structures were mainly determined by 2D NMR and computational (NMR/ECD calculations) methods. Compound 1 is a rare acylated kaempferol rhamnoside possessing a truxinate unit. 6 (Z,E-platanoside) and 7 (E,E-platanoside) were confirmed to have remarkable inhibitory effects against both methicillin-resistant S. aureus (MIC: ≤ 16 µg/mL) and glycopeptide-resistant Enterococcus faecium (MIC: ≤ 1 µg/mL). These platanosides were subjected to docking analyses against FabI (enoyl-ACP reductase) and PBP1/2 (penicillin binding protein), both of which are pivotal enzymes governing bacterial growth but not found in the human host. The results showed that 6 and 7 displayed superior binding affinities towards FabI and PBP2. Moreover, surface plasmon resonance studies on the interaction of 1/7 and FabI revealed that 7 has a higher affinity (KD = 1.72 µM), which further supports the above in vitro data and is thus expected to be a novel anti-antibacterial drug lead.


Subject(s)
Glycosides , Methicillin-Resistant Staphylococcus aureus , Phenols , Sepsis , Staphylococcal Infections , Humans , Anti-Bacterial Agents/chemistry , Chromatography, Liquid , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) , Microbial Sensitivity Tests , Tandem Mass Spectrometry , Structure-Activity Relationship
4.
Infect Drug Resist ; 16: 2321-2338, 2023.
Article in English | MEDLINE | ID: mdl-37155475

ABSTRACT

The urgent need for SARS-CoV-2 controls has led to a reassessment of approaches to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. There are yet no clinically approved broad-spectrum antivirals available for beta-coronaviruses. Discovery pipelines for pan-virus medications against a broad range of betacoronaviruses are therefore a priority. A variety of marine natural product (MNP) small molecules have shown inhibitory activity against viral species. Access to large data caches of small molecule structural information is vital to finding new pharmaceuticals. Increasingly, molecular docking simulations are being used to narrow the space of possibilities and generate drug leads. Combining in-silico methods, augmented by metaheuristic optimization and machine learning (ML) allows the generation of hits from within a virtual MNP library to narrow screens for novel targets against coronaviruses. In this review article, we explore current insights and techniques that can be leveraged to generate broad-spectrum antivirals against betacoronaviruses using in-silico optimization and ML. ML approaches are capable of simultaneously evaluating different features for predicting inhibitory activity. Many also provide a semi-quantitative measure of feature relevance and can guide in selecting a subset of features relevant for inhibition of SARS-CoV-2.

5.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175458

ABSTRACT

Triple-negative breast cancer (TNBC) is insensitive to target therapy for non-TNBC and needs novel drug discovery. Extracts of the traditional herb Boesenbergia plant in Southern Asia exhibit anticancer effects and contain novel bioactive compounds but merely show cytotoxicity. We recently isolated a new compound from B. stenophylla, stenophyllol B (StenB), but the impact and mechanism of its proliferation-modulating function on TNBC cells remain uninvestigated. This study aimed to assess the antiproliferative responses of StenB in TNBC cells and examine the drug safety in normal cells. StenB effectively suppressed the proliferation of TNBC cells rather than normal cells in terms of an ATP assay. This preferential antiproliferative function was alleviated by pretreating inhibitors for oxidative stress (N-acetylcysteine (NAC)) and apoptosis (Z-VAD-FMK). Accordingly, the oxidative-stress-related mechanisms were further assessed. StenB caused subG1 and G2/M accumulation but reduced the G1 phase in TNBC cells, while normal cells remained unchanged between the control and StenB treatments. The apoptosis behavior of TNBC cells was suppressed by StenB, whereas that of normal cells was not suppressed according to an annexin V assay. StenB-modulated apoptosis signaling, such as for caspases 3, 8, and 9, was more significantly activated in TNBC than in normal cells. StenB also caused oxidative stress in TNBC cells but not in normal cells according to a flow cytometry assay monitoring reactive oxygen species, mitochondrial superoxide, and their membrane potential. StenB induced greater DNA damage responses (γH2AX and 8-hydroxy-2-deoxyguanosine) in TNBC than in normal cells. All these StenB responses were alleviated by NAC pretreatment. Collectively, StenB modulated oxidative stress responses, leading to the antiproliferation of TNBC cells with little cytotoxicity in normal cells.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , DNA Damage , Cell Proliferation , Cell Line, Tumor , Oxidative Stress , Apoptosis , Acetylcysteine/pharmacology
6.
Nat Prod Res ; : 1-8, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36416441

ABSTRACT

Two new bisanthraquinones, glabraquinone A and B (1-2) were isolated from the root of Prismatomeris glabra (Korth.) Valeton. In addition to the new glabraquinones, six known anthraquinones, that is, 1-hydroxy-2-methoxy-6-methylanthraquinone (3), 1,2-dimethoxy-7-methylanthraquinone (4), lucidin (5), nordamnacanthal (6), damnacanthal (7) and 2-carboxaldehyde-3-hydroxyanthraquinone (8)) and an aromatic compound, that is, catechol diethyl ether (9) were isolated and characterized in this study. Compounds 1, 4 and 9 showed mild activity, reducing N2A cell viability to 77%, 82% and 77%, respectively, in anti-neuroblastoma assay.

7.
Mar Drugs ; 20(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36286470

ABSTRACT

Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative properties and is currently being investigated for its efficacy in the treatment of certain viruses (malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to exert effects via modulation of SIX1 gene expression, a gene critical to craniofacial development via the WNT, NOTCH, and PI3K/AKT pathways. To date little work has focused on Manzamine-A and how its use may affect bone. We hypothesize that Manzamine-A, through SIX1, alters bone cell activity. Here, we assessed the effects of Manzamine-A on cells that are responsible for the generation of bone, pre-osteoblasts and osteoblasts. PCR, qrtPCR, MTS cell viability, Caspase 3/7, and functional assays were used to test the effects of Manzamine-A on these cells. Our data suggests Six1 is highly expressed in osteoblasts and their progenitors. Further, osteoblast progenitors and osteoblasts exhibit great sensitivity to Manzamine-A treatment exhibited by a significant decrease in cell viability, increase in cellular apoptosis, and decrease in alkaline phosphatase activity. In silico binding experiment showed that manzamine A potential as an inhibitor of cell proliferation and survival proteins, i.e., Iκb, JAK2, AKT, PKC, FAK, and Bcl-2. Overall, our data suggests Manzamine-A may have great effects on bone health overall and may disrupt skeletal development, homeostasis, and repair.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Alkaline Phosphatase/metabolism , Caspase 3/metabolism , Osteoblasts , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Differentiation , Osteogenesis
8.
J Nat Prod ; 85(7): 1779-1788, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35815804

ABSTRACT

Oxidative stress plays an important role in acetaminophen (APAP)-induced hepatotoxicity. Platanosides (PTSs) isolated from the American sycamore tree (Platanus occidentalis) represent a potential new four-molecule botanical drug class of antibiotics active against drug-resistant infectious disease. Preliminary studies have suggested that PTSs are safe and well tolerated and have antioxidant properties. The potential utility of PTSs in decreasing APAP hepatotoxicity in mice in addition to an assessment of their potential with APAP for the control of infectious diseases along with pain and pyrexia associated with a bacterial infection was investigated. On PTS treatment in mice, serum alanine aminotransferase (ALT) release, hepatic centrilobular necrosis, and 4-hydroxynonenal (4-HNE) were markedly decreased. In addition, inducible nitric oxide synthase (iNOS) expression and c-Jun-N-terminal kinase (JNK) activation decreased when mice overdosed with APAP were treated with PTSs. Computational studies suggested that PTSs may act as JNK-1/2 and Keap1-Nrf2 inhibitors and that the isomeric mixture could provide greater efficacy than the individual molecules. Overall, PTSs represent promising botanical drugs for hepatoprotection and drug-resistant bacterial infections and are effective in protecting against APAP-related hepatotoxicity, which decreases liver necrosis and inflammation, iNOS expression, and oxidative and nitrative stresses, possibly by preventing persistent JNK activation.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Acetaminophen/pharmacology , Animals , Chemical and Drug Induced Liver Injury/drug therapy , Drug Combinations , Glycosides , Kelch-Like ECH-Associated Protein 1/metabolism , Liver , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Necrosis/chemically induced , Necrosis/drug therapy , Necrosis/metabolism , Oxidative Stress , Phenols
9.
ACS Omega ; 7(26): 22896-22905, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35811872

ABSTRACT

An efficient solid-phase method has been reported to prepare well-defined lysine defect dendrimers. Using orthogonally protected lysine residues, pure G2 to G4 lysine defect dendrimers were prepared with 48-95% yields within 13 h. Remarkably, high-purity products were collected via precipitation without further purification steps. This method was applied to prepare a pair of 4-carboxyphenylboronic acid-decorated defect dendrimers (16 and 17), which possessed the same number of boronic acids. The binding affinity of 16, in which the ε-amines of G1 lysine are fractured, for glucose and sorbitol was 4 times that of 17. This investigation indicated the role of allocation and distribution of peripheries for the dendrimer's properties and activity.

10.
J Nat Prod ; 85(5): 1436-1441, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35473311

ABSTRACT

Two new lactone lipids, scoriosin (1) and its methyl ester (2), with a rare furylidene ring joined to a tetrahydrofurandione ring, were isolated from Scorias spongiosa, commonly referred to as sooty mold. The planar structure of these compounds was assigned by 1D and 2D NMR. The conformational analysis of these molecules was undertaken to evaluate the relative and absolute configuration through GIAO NMR chemical shift analysis and ECD calculation. In addition to the potent antimicrobial activities, compound 2 strongly potentiated the activity of amphotericin B against Cryptococcus neoformans, suggesting the potential utility of this compound in combination therapies for treating cryptococcal infections.


Subject(s)
Anti-Infective Agents , Cryptococcus neoformans , Antifungal Agents/pharmacology , Ascomycota , Lactones/pharmacology , Lipids , Molecular Structure
11.
Biomed Pharmacother ; 148: 112676, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35149387

ABSTRACT

Since the discovery of the kahalalide family of marine depsipeptides in 1993, considerable work has been done to develop these compounds as new and biologically distinct anti-cancer agents. Clinical trials and laboratory research have yielded a wealth of data that indicates tolerance of kahalalides in healthy cells and selective activity against diseased cells. Currently, two molecules have attracted the greates level of attention, kahalalide F (KF) and isokahalalide F (isoKF, Irvalec, PM 02734, elisidepsin). Both compounds were originally isolated from the sarcoglossan mollusk Elysia rufescens but due to distinct structural characteristics it has been hypothesized and recently shown that the ultimate origin of the molecules is microbial. The search for their true source has been a subject of considerable research in the anticipation of finding new analogs and a culturable expression system that can produce sufficient material through fermentation to be industrially relevant.


Subject(s)
Antineoplastic Agents , Depsipeptides , Neoplasms , Animals , Antineoplastic Agents/chemistry , Depsipeptides/pharmacology , Mollusca/chemistry , Neoplasms/drug therapy
12.
J Asian Nat Prod Res ; 24(2): 146-152, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33565351

ABSTRACT

Three new compounds, i.e. stenophyllols A-C (1-3), were isolated from the rhizome of Boesenbergia stenophylla. The structures were determined by spectroscopic analysis (UV, IR, NMR and HRESIMS). In-vitro neuroblastoma cell viability assay showed stenophyllol A (1) was able to reduce the N2A cell viability to 20% within 24 h.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Zingiberaceae , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Survival , Mice , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts , Rhizome/chemistry , Zingiberaceae/chemistry
13.
J Nat Prod ; 84(11): 3001-3007, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34677966

ABSTRACT

The pressing need for SARS-CoV-2 controls has led to a reassessment of strategies to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. This review article addresses how contemporary approaches involving computational chemistry, natural product (NP) and protein databases, and mass spectrometry (MS) derived target-ligand interaction analysis can be utilized to expedite the interrogation of NP structures while minimizing the time and expense of extraction, purification, and screening in BioSafety Laboratories (BSL)3 laboratories. The unparalleled structural diversity and complexity of NPs is an extraordinary resource for the discovery and development of broad-spectrum inhibitors of viral genera, including Betacoronavirus, which contains MERS, SARS, SARS-CoV-2, and the common cold. There are two key technological advances that have created unique opportunities for the identification of NP prototypes with greater efficiency: (1) the application of structural databases for NPs and target proteins and (2) the application of modern MS techniques to assess protein-ligand interactions directly from NP extracts. These approaches, developed over years, now allow for the identification and isolation of unique antiviral ligands without the immediate need for BSL3 facilities. Overall, the goal is to improve the success rate of NP-based screening by focusing resources on source materials with a higher likelihood of success, while simultaneously providing opportunities for the discovery of novel ligands to selectively target proteins involved in viral infection.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Biological Products/pharmacology , Drug Discovery , Computational Biology , Databases, Chemical , Databases, Protein , Ligands , Mass Spectrometry , Protein Interaction Mapping , SARS-CoV-2/drug effects
14.
Ultrason Sonochem ; 79: 105793, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34673338

ABSTRACT

Pandan (Pandanus amaryllifolius) is commonly used as a food ingredient in Southeast Asia due to its delicious flavor, appetizing aroma and bright green colour. Pandan plant is uniquely found only in certain parts of the world. Despite its increasing popularity worldwide, its export market is limited by practical issues. One of the main problems for exporting Pandan to global market is its stability during transport. Due to the volatility of its active constituent, the functional properties of Pandan are lost during storage and shipment. In this study, we explored the ability of ultrasound processing technology to encapsulate the aromatic Pandan extract using lysozyme or chitosan as a shell material. 20 kHz ultrasonicator was used to encapsulate the pandan extract at 150 W of applied power. Two parameters, the ultrasonic probe tip and the core-to-shell ratio were varied to control the properties of the encapsulates. The diameters of the probe tip used were 0.3 and 1.0 cm. The core-to-shell volume ratios used were 1:160 and 1:40. The size distribution and the stability of the synthesized microspheres were characterized to understand and explore the possible parameters variation impact. Both size and size distribution of the microspheres were found to be influenced by the parameters varied to certain extent. The results showed that the mean size of the microspheres was generally smallest when using 1 cm probe tip with lower core-to-shell volume ratio but largest when using the 3 mm tip with higher core-to-shell volume ratio. This indicates that the sonication parameters could be fine-tuned to achieve the encapsulation of Pandan extract for storage and export. The pandan-encapsulated microspheres were also found to be stable during storage at least for one month.


Subject(s)
Pandanaceae , Chitosan , Microspheres , Particle Size , Plant Extracts , Sonication , Ultrasonics
15.
Mar Drugs ; 19(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34564169

ABSTRACT

Manzamines are complex polycyclic marine-derived ß-carboline alkaloids with reported anticancer, immunostimulatory, anti-inflammatory, antibacterial, antiviral, antimalarial, neuritogenic, hyperlipidemia, and atherosclerosis suppression bioactivities, putatively associated with inhibition of glycogen synthase kinase-3, cyclin-dependent kinase 5, SIX1, and vacuolar ATPases. We hypothesized that additional, yet undiscovered molecular targets might be associated with Manzamine A's (MZA) reported pharmacological properties. We report here, for the first time, that MZA selectively inhibited a 90 kDa ribosomal protein kinase S6 (RSK1) when screened against a panel of 30 protein kinases, while in vitro RSK kinase assays demonstrated a 10-fold selectivity in the potency of MZA against RSK1 versus RSK2. The effect of MZA on inhibiting cellular RSK1 and RSK2 protein expression was validated in SiHa and CaSki human cervical carcinoma cell lines. MZA's differential binding and selectivity toward the two isoforms was also supported by computational docking experiments. Specifically, the RSK1-MZA (N- and C-termini) complexes appear to have stronger interactions and preferable energetics contrary to the RSK2-MZA ones. In addition, our computational strategy suggests that MZA binds to the N-terminal kinase domain of RSK1 rather than the C-terminal domain. RSK is a vertebrate family of cytosolic serine-threonine kinases that act downstream of the ras-ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, which phosphorylates substrates shown to regulate several cellular processes, including growth, survival, and proliferation. Consequently, our findings have led us to hypothesize that MZA and the currently known manzamine-type alkaloids isolated from several sponge genera may have novel pharmacological properties with unique molecular targets, and MZA provides a new tool for chemical-biology studies involving RSK1.


Subject(s)
Antineoplastic Agents/therapeutic use , Carbazoles/therapeutic use , Porifera , Uterine Cervical Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aquatic Organisms , Carbazoles/chemistry , Carbazoles/pharmacology , Female , Humans , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Docking Simulation
16.
Angew Chem Int Ed Engl ; 60(41): 22270-22275, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34374477

ABSTRACT

Forrestiacids A (1) and B (2) are a novel class of [4+2] type pentaterpenoids derived from a rearranged lanostane moiety (dienophile) and an abietane unit (diene). These unprecedented molecules were isolated using guidance by molecular ion networking (MoIN) from Pseudotsuga forrestii, an endangered member of the Asian Douglas Fir Family. The intermolecular hetero-Diels-Alder adducts feature an unusual bicyclo[2.2.2]octene ring system. Their structures were elucidated by spectroscopic analysis, GIAO NMR calculations and DP4+ probability analyses, electronic circular dichroism calculations, and X-ray diffraction analysis. This unique addition to the pentaterpene family represents the largest and the most complex molecule successfully assigned using computational approaches to predict accurately chemical shift values. Compounds 1 and 2 exhibited potent inhibitory activities (IC50 s <5 µM) of ATP-citrate lyase (ACL), a new drug target for the treatment of glycolipid metabolic disorders including hyperlipidemia. Validating this activity 1 effectively attenuated the de novo lipogenesis in HepG2 cells. These findings provide a new chemical class for developing potential therapeutic agents for ACL-related diseases with strong links to traditional medicines.


Subject(s)
ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Biological Products/pharmacology , Enzyme Inhibitors/pharmacology , Terpenes/pharmacology , ATP Citrate (pro-S)-Lyase/metabolism , Biological Products/chemistry , Enzyme Inhibitors/chemistry , Humans , Lipogenesis/drug effects , Magnetic Resonance Spectroscopy , Molecular Conformation , Terpenes/chemistry
17.
J Nat Prod ; 83(2): 286-295, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32022559

ABSTRACT

Natural products remain an important source of drug leads covering unique chemical space and providing significant therapeutic value for the control of cancer and infectious diseases resistant to current drugs. Here, we determined the antiproliferative activity of a natural product manzamine A (1) from an Indo-Pacific sponge following various in vitro cellular assays targeting cervical cancer (C33A, HeLa, SiHa, and CaSki). Our data demonstrated the antiproliferative effects of 1 at relatively low and non-cytotoxic concentrations (up to 4 µM). Mechanistic investigations confirmed that 1 blocked cell cycle progression in SiHa and CaSki cells at G1/S phase and regulated cell cycle-related genes, including restoration of p21 and p53 expression. In apoptotic assays, HeLa cells showed the highest sensitivity to 1 as compared to other cell types (C33A, SiHa, and CaSki). Interestingly, 1 decreased the levels of the oncoprotein SIX1, which is associated with oncogenesis in cervical cancer. To further investigate the structure-activity relationship among manzamine A (1) class with potential antiproliferative activity, molecular networking facilitated the efficient identification, dereplication, and assignment of structures from the manzamine class and revealed the significant potential in the design of optimized molecules for the treatment of cervical cancer. These data suggest that this sponge-derived natural product class warrants further attention regarding the design and development of novel manzamine analogues, which may be efficacious for preventive and therapeutic treatment of cancer. Additionally, this study reveals the significance of protecting fragile marine ecosystems from climate change-induced loss of species diversity.


Subject(s)
Apoptosis/drug effects , Biological Products/pharmacology , Carbazoles/pharmacology , Homeodomain Proteins/metabolism , Uterine Cervical Neoplasms/drug therapy , Biological Products/chemistry , Carbazoles/chemistry , Cell Line, Tumor , Ecosystem , Female , HeLa Cells , Homeodomain Proteins/chemistry , Humans , Structure-Activity Relationship , Uterine Cervical Neoplasms/chemistry
18.
J Anal Toxicol ; 43(7): 528-535, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31141150

ABSTRACT

A novel mass spectrometry detection technique based on a multi-period and multi- experiment (MRM-EPI-MRM3) with library matching in a single run for fast and rapid screening and identification of amphetamine type stimulants (ATS) related drugs in whole blood, urine and dried blood stain was developed and validated. The ATS-related drugs analyzed in this study include ephedrine, pseudoephedrine, amphetamine, methamphetamine, MDMA (3,4-Methylenedioxymethamphetamine), MDA (3,4-Methylenedioxyamphetamine), MDEA (3,4-Methylenedioxy-N-ethylamphetamine) and phentermine. The relative standard deviation for inter and intraday was less than 15% while recoveries ranged from 80% to 120% for all three matrices, i.e., whole blood, urine and dried blood stain. All compounds gave library matching percentage of more than 85% based on the purity. This method was proven to be simple and robust, and provide high confident results complemented with library matching confirmation.


Subject(s)
Amphetamine , Blood Stains , Central Nervous System Stimulants , Forensic Toxicology/methods , Substance Abuse Detection/methods , Amphetamine/blood , Amphetamine/urine , Central Nervous System Stimulants/blood , Central Nervous System Stimulants/urine , Chromatography, Liquid , Forensic Toxicology/instrumentation , Humans , Limit of Detection , Reproducibility of Results , Substance Abuse Detection/instrumentation , Tandem Mass Spectrometry
19.
Toxins (Basel) ; 11(4)2019 03 31.
Article in English | MEDLINE | ID: mdl-30935130

ABSTRACT

Mycotoxins are common food contaminants which cause poisoning and severe health risks to humans and animals. The present study applied chemometric approach in liquid chromatography-tandem mass spectrometry (LC-MS/MS) optimization for simultaneous determination of mycotoxins, i.e., aflatoxins B1, B2, G1, and G2, and ochratoxin A. The validated quick, easy, cheap, effective, rugged, and safe (QuEChERS)-LC-MS/MS method was used to study the occurrence of mycotoxins in 120 food matrices. The recovery ranges from 81.94% to 101.67% with relative standard deviation (RSD) lesser than 11%. Through the developed method, aflatoxins were detected in raisin, pistachio, peanut, wheat flour, spice, and chili samples with concentration ranges from 0.45 to 16.93 µg/kg. Trace concentration of ochratoxin A was found in wheat flour and peanut samples which ranged from 1.2 to 3.53 µg/kg. Some of the tested food samples contained mycotoxins of above the European legal maximum limit.


Subject(s)
Food Contamination/analysis , Mycotoxins/analysis , Chromatography, Liquid , Environmental Monitoring , Malaysia , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
20.
J Chromatogr Sci ; 55(3): 378-391, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27903555

ABSTRACT

Hollow fiber liquid-phase microextraction (HF-LPME) techniques coupled to chromatographic systems have been widely used for extraction and determination of diverse compounds. HF-LPME was able to provide better results in precision, accuracy, selectivity and enrichment factor, in addition to reduction of matrix effect and carry over. It is applicable within a wide pH range and compatible with most analytical instruments which enable the utilization of HF-LPME in a wide variety of applications. This review focused on the modified HF-LPME techniques, efficiency, comparison to other LPME methods and applications.


Subject(s)
Chromatography, Liquid/methods , Liquid Phase Microextraction/methods , Organic Chemicals , Limit of Detection , Linear Models , Organic Chemicals/analysis , Organic Chemicals/chemistry , Organic Chemicals/isolation & purification , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...